1 курс

ПЛАН – КОНСПЕКТ проведения практического занятия № 8 по дисциплине «Математика»

Раздел 4. Основы тригонометрии. Тригонометрические функции.

Тема № 4.6: «Преобразование графиков тригонометрических функций»

Подготовил: преподаватель

В.Н. Борисов

Практическое занятие № 8 «Преобразование графиков тригонометрических функций» по Теме № 4.6. «Преобразование графиков тригонометрических функций».

Цель занятия: повторить, изучить со студентами основные сведения о свойствах тригонометрических функций, построение их графиков, преобразование графиков тригонометрических функций (в том числе сжатие и растяжение графиков тригонометрических функций), практическое применение полученных знаний — преобразование графиков тригонометрических функций (в том числе сжатие и растяжение графиков тригонометрических функций), решение задач на указанную тему.

Вид занятия: классно-групповое, комбинированное (по повторению, проверке знаний, умений по пройденному материалу, применению на практике полученных знаний).

Методы проведения занятия: повторное доведение теоретических сведений, выполнение практических заданий.

Время проведения: 2 ч (90 мин.)

Основные вопросы:

- 1. Преобразование графиков тригонометрических функций (в том числе сжатие и растяжение графиков тригонометрических функций).
- 2. Практическое применение полученных знаний преобразование графиков тригонометрических функций (в том числе сжатие и растяжение графиков тригонометрических функций), решение задач на указанную тему.

Литература:

1. [1 учебник раздела «Основные печатные и электронные издания» рабочей программы изучения дисциплины]: Алимов Ш.А. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа 10-11 класс. Учебник. Базовый и углубленный уровень./Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачева и др. — Москва: Просвещение, 2024.-463 с., ISBN 978-5-09-112136-0. —Текст: электронный // ЭБС Лань — URL: https://e.lanbook.com/book/408656, § 38,39,40,41,42 с. 201-222 (часть 5) (2012-2017 годы издания, глава VII).

Примерный расчет времени:

- 1. Вступительная часть 20 мин.
- 2. Основная часть 60 мин.

3. Заключительная часть – 10 мин.

Вступительная часть:

Занятия начать с объявления темы занятия, основных рассматриваемых вопросов, времени изучения темы (повторение пройденного материала), опроса по пройденному материалу, закрепления на практике полученных знаний, перечисления литературы.

Основная часть (повторение пройденного материала, выполнение практических заданий):

Основные сведения о тригонометрических функциях, их свойствах и графиках представлены в Конспекте лекционного занятия по Теме 4.5 «Тригонометрические функции, их свойства и графики», в 1-ом учебнике раздела «Основной учебной литературы» рабочей программы изучения дисциплины на с. 201-222 (часть 5) § 38,39,40,41,42 (2012-2017 годы издания, глава VII, 2024 год издания, глава VII).

Первый вопрос: <u>Преобразование графиков тригонометрических функций</u> (в том числе сжатие и растяжение графиков тригонометрических функций).

Преобразование графиков функций:

- сжатие графика функции к оси ординат (ОУ);
- растяжение графика функции от оси ординат;
- симметричное отображение графика функции относительно оси ординат;
- сдвиг графика влево и вправо вдоль оси абсцисс (OX);
- растяжение и сжатие графика вдоль оси ординат;
- симметричное отображение графика относительно оси абсцисс:
- сдвиг графика вверх и вниз вдоль оси ординат;
- общая схема построения графика функции;
- графики функций с модулем.

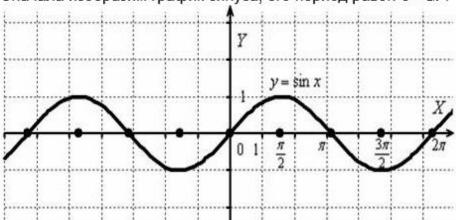
Сжатие (растяжение) графика к (от) оси ординат. Симметричное отображение графика относительно оси *OY*

Первая группа действий связана с умножением АРГУМЕНТА функции на число. Для удобства я разобью правило на несколько пунктов:

Сжатие графика функции к оси ординат

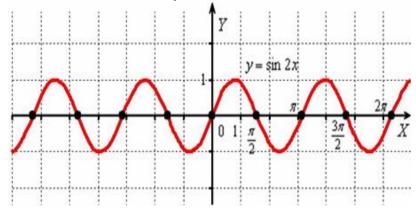
Это случай когда АРГУМЕНТ функции умножен на число, бОльшее единицы.

Правило: чтобы построить график функции f(kx), где k > 1, нужно график функции f(x) **сжать к оси** OY в k раз.


И первой на эшафот взойдёт функция, которой я недавно грозился:

Пример 1

Построить график функции $y = \sin 2x$.


Сначала изобразим график синуса, его период равен $T = 2\pi$:

Сначала изобразим график синуса, его период равен $T = 2\pi$:

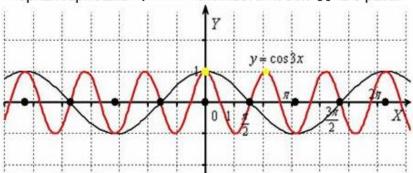
К слову, чертить графики тригонометрических функций вручную — занятие кропотливое, поскольку $\pi \approx 3,14$, $\frac{\pi}{2} \approx 1,57$, $2\pi \approx 6,28$ и т.д., то есть на стандартной клетчатой бумаге аккуратным нужно быть вплоть до миллиметра, даже до полумиллиметра. Впрочем, многие с этим уже столкнулись.

Теперь поиграем на бесконечно длинном баяне. Мысленно возьмём синусоиду в руки и сожмём её **к оси** *OY* в 2 раза:

То есть, график функции $y = \sin 2x$ получается путём сжатия графика $y = \sin x$ к оси ординат в два раза. Логично, что период итоговой функции тоже уполовинился: $T = \pi$

В целях самоконтроля можно взять 2-3 значения «икс» и устно либо на черновике выполнить подстановку:

$$x = \frac{\pi}{4} \Rightarrow \sin\left(2 \cdot \frac{\pi}{4}\right) = \sin\frac{\pi}{2} = 1$$


$$x = \frac{\pi}{2} \Rightarrow \sin\left(2 \cdot \frac{\pi}{2}\right) = \sin \pi = 0$$

Смотрим на чертёж, и видим, что это действительно так.

Пример 2

Построить график функции $y = \cos 3x$

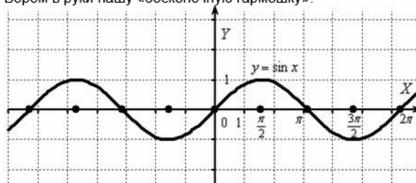
«Чёрная гармошка» $y = \cos x$ сжимается **к оси** оу в 3 раза:

Итоговый график $y = \cos 3x$ проведён красным цветом.

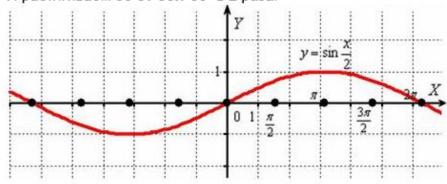
Исходный период $T=2\pi$ косинуса закономерно уменьшается в три раза: $T=\frac{2\pi}{3}$ (отграничен жёлтыми точками).

Растяжение графика функции от оси ординат

Это противоположное действие, теперь баян не сжимается, а растягивается. Случай имеет место, когда APГУМЕНТ функции умножается на число 0 < k < 1.


Правило: чтобы построить график функции f(kx), где 0 < k < 1, нужно график функции f(x) растянуть от оси OY в $\frac{1}{k}$ раз.

Продолжим мучить синус:


Пример 3

Построить график функции $y = \sin \frac{x}{2}$

Берём в руки нашу «бесконечную гармошку»:

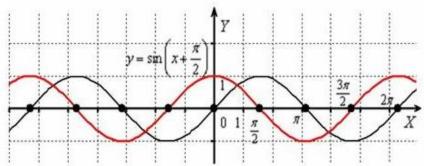
И растягиваем её от оси ОУ в 2 раза:

То есть, график функции $y = \sin\frac{x}{2}$ получается путём **растяжения** графика $y = \sin x$ **от оси ординат** в два раза. Период итоговой функции увеличивается в 2 раза: $T = 2\pi \cdot 2 = 4\pi$, он толком даже не вместился на данный чертёж.

Операции сжатия/растяжения графиков, разумеется, выполнимы не только для тригонометрических функций:

Сдвиг графика влево/вправо вдоль оси абсцисс

Если к АРГУМЕНТУ функции добавляется константа, то происходит сдвиг (параллельный перенос) графика вдоль оси OX. Рассмотрим функцию f(x) и положительное число b:


Правила:

- 1) чтобы построить график функции f(x+b), нужно график f(x) сдвинуть **ВДОЛЬ** оси OX на b единиц **влево**;
- 2) чтобы построить график функции f(x-b), нужно график f(x) сдвинуть **ВДОЛЬ** оси OX на b единиц **вправо**.

Пример 8

Построить график функции $y = \sin\left(x + \frac{\pi}{2}\right)$

График синуса $y = \sin x$ (чёрный цвет) сдвинем вдоль оси OX на $\frac{\pi}{2}$ влево:

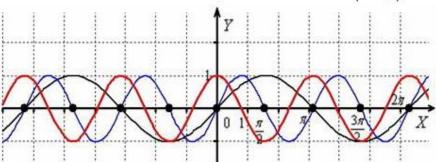
Внимательно присмотримся к полученному красному графику $y = \sin\left(x + \frac{\pi}{2}\right)$ Это в точности график косинуса $y = \cos x$! По сути, мы получили геометрическую иллюстрацию

формулы приведения $\sin\left(x+\frac{\pi}{2}\right) = \cos x$, и перед вами, пожалуй, самая «знаменитая» формула, связывающая данные тригонометрические функции. График функции $y = \cos x$ получается путём сдвига синусоиды $y = \sin x$ вдоль оси OX на $\frac{\pi}{2}$ единиц влево (о чём уже говорилось на уроке Графики и свойства элементарных функций). Аналогично можно убедиться в справедливости любой другой формулы приведения.

Рассмотрим композиционное правило, когда аргумент представляет собой линейную функцию: f(kx+b), при этом параметр «ка» **не равен** нулю или единице, параметр «бэ» – **не равен** нулю. Как построить график такой функции? Из школьного курса мы знаем, что умножение имеет приоритет перед сложением, поэтому, казалось бы, сначала график сжимаем/растягиваем/отображаем в зависимости от значения k, а потом сдвигаем на b единиц. Но здесь есть подводный камень, и корректный алгоритм таков:

Аргумент функции необходимо представить в виде $f(kx+b) = f\left(k\left(x+\frac{b}{k}\right)\right)$ и последовательно выполнить следующие преобразования:

- 1) График функции f(x) сжимаем (или растягиваем) к оси (от оси) ординат: f(kx) (если k < 0, то график дополнительно следует отобразить симметрично относительно оси OY).
- 2) График полученной функции f(kx) сдвигаем влево (или вправо) вдоль оси абсцисс **на** $\frac{b}{k}$ (!!!) **единиц**, в результате чего будет построен искомый график f(kx+b).


<u>Пример 9</u>

Построить график функции $y = \sin\left(2x + \frac{\pi}{2}\right)$

Представим функцию в виде $y = \sin\left(2\left(x + \frac{\pi}{4}\right)\right)$ и выполним следующие преобразования: синусоиду $y = \sin x$ (чёрный цвет):

1) сожмём **к оси** OY в два раза: $y = \sin 2x$ (синий цвет);

2) сдвинем вдоль оси *ОХ* на $\frac{\pi}{4}$ (!!!) влево: $y = \sin\left(2x + \frac{\pi}{2}\right)$ (красный цвет):

Пример вроде бы несложный, а пролететь с параллельным переносом легче лёгкого.

График сдвигается на $\frac{\pi}{4}$, а вовсе не на $\frac{\pi}{2}$.

Сдвиг графика вверх/вниз вдоль оси ординат

Настала пора дать передышку ногам и сесть в лифт.

Если к ФУНКЦИИ добавляется константа, то происходит сдвиг (параллельный перенос) её графика вдоль оси OY. Рассмотрим функцию f(x) и положительное число h:

Правила:

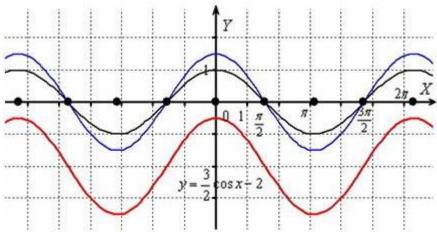
- 1) чтобы построить график функции f(x) + h, нужно график f(x) сдвинуть **ВДОЛЬ** оси OY на h единиц **вверх**;
- 2) чтобы построить график функции f(x) h, нужно график f(x) сдвинуть **ВДОЛЬ** оси OY на h единиц **вниз**.

Пример 15

Построить графики функций $y = \sin x + 2$, $y = \sin x - 1$.

В комментариях, думаю, нет особой необходимости:

Комбинационное построение графика mf(x) + h в общем случае осуществляется очевидны образом:


- 1) График функции f(x) растягиваем (сжимаем) вдоль оси $\mathcal{O}Y$. Если множитель отрицателен, дополнительно осуществляем симметричное отображение относительно оси $\mathcal{O}X$.
- 2) Полученный на первом шаге график mf(x) сдвигаем вверх или вниз в соответствии со значением константы h.

Пример 16

Построить график функции $y = \frac{3}{2}\cos x - 2$

График косинуса $y = \cos x$ (чёрный цвет):

- 1) Растягиваем вдоль оси OY в 1,5 раза: $y = \frac{3}{2} \cos x$ (синий цвет);
- 2) Сдвигаем вдоль оси *OY* на 2 единицы вниз: $y = \frac{3}{2}\cos x 2$:

Второй вопрос: <u>Практическое применение полученных знаний – преобразование графиков тригонометрических функций (в том числе сжатие и растяжение графиков тригонометрических функций), решение задач на указанную тему.</u>

Задание: (исходные данные):

- 1. рассмотреть примеры выполнения практических заданий (решение задач по преобразование графиков тригонометрических функций (в том числе сжатие и растяжение графиков тригонометрических функций)), приведенных в 1-ом учебнике раздела «Основной учебной литературы» рабочей программы изучения дисциплины на с. 201-222 (часть 5) § 38,39,40,41,42 (2012-2017 годы издания, глава VII, 2024 год издания, глава VII).
- **2.** Решить задачи, заданные преподавателем: № 717, 719, 729, 731, 744, 746, 747, 748.

Заключительная часть.

- 1. Закончить изложение материала.
- 2. Выдать задание на практическую работу.
- 3. Ответить на возникшие вопросы.
- 4. Принять защиту выполненных ранее практических работ.
- 5. Подвести итоги занятия.
- 6. Выдать задание на самоподготовку (домашнее задание).

Задание на самоподготовку (домашнее задание):

- 1. Детально проработать материал занятия, представленный в План-конспекте текущего практического занятия, в учебнике, указанном на с. 2 текущего документа.
- 2. Выполнить практическое задание, заданное преподавателем.
- 3. Подготовиться к опросу по пройденному материалу.